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A sequence space model which describes the interplay of mutation and selection
in molecular evolution is shown to be equivalent to an Ising quantum chain.
Observable quantities tailored to match the biological situation are then
employed to treat three fitness landscapes exactly.
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1. INTRODUCTION

Sequence space models seek to describe biological evolution at the
molecular level through mutation and selection. Well-known ones are
Kauffman's adaptive walk(27) and Eigen's quasispecies model.(14) Whereas
the former describes a hill-climbing process of a genetically homogeneous
population in tunably rugged fitness landscapes (where the fitness values
are considered as a mountain range over sequence space), the latter
includes the genetic structure of the population due to the balance between
mutation and selection. For equal fitness landscapes, the quasispecies
model is thus more difficult to treat than the corresponding adaptive walk.

Some progress was made in ref. 30, through the identification of the
quasispecies model with a specific, anisotropic 2D Ising model: The muta-
tion-selection matrix is equivalent to the row transfer matrix, with the muta-
tion probability as a temperature-like parameter, and "error thresholds"
corresponding to phase transitions. This equivalence was exploited to treat



simple fitness landscapes as well as spin-glass Hamiltonians with methods
from statistical mechanics.(31,32,44) Of these results, most are approximate
or numerical, and the few exact ones in ref. 32 are restricted to the equi-
librium state.

The quasispecies model assumes mutations to originate as replication
errors on the occasion of reproduction events. An alternative as introduced
in ref. 2 describes mutation and selection as going on in parallel. In subse-
quent investigations,(8,48) this model turned out to be both more powerful
and structurally simpler than the quasispecies model. Which is the more
appropriate one from the biological point of view amounts to the question
whether rates of molecular evolution are closer to constant per generation
or constant in time—a long-standing, but still unresolved issue (see the dis-
cussion of the "generation-time effect" in ref. 23). Even in the former situa-
tion, however, the parallel version is an excellent approximation. Note that
both models are sequence space versions of the mutation-selection equa-
tions of classical population genetics.(26)

In this article, a preliminary account of which was given in ref. 5, we
will work out that, in the same way as the quasispecies model is equivalent
to the row transfer matrix of a 2D Ising model, the parallel mutation-selec-
tion model corresponds to the Hamiltonian of an Ising quantum chain.
Observable quantities, tailored to match the biological situation, will then
be employed to treat three simple fitness landscapes exactly (more biological
implications will be dealt with elsewhere). But let us first elaborate on the
evolution model and its connection to Ising quantum chains.

2. THE EVOLUTION MODEL

In line with the population genetic formalism (see, e.g., ref. 13), we
characterize individuals by their genotypes. For our purpose, it is sufficient
to think of a gene (or even the whole genome) as a sequence in the four-
letter alphabet {A(denin), C(ytosin), G(uanin), T(hymin)} of length about
103 (or 106-109 for a genome). In order to simplify the mathematical
treatment, we assume that our sequences have fixed length N, and the alpha-
bet is { + 1, -1}. This binary code may be interpreted as distinguishing
only between purines (G,A) and pyrimidines (C,T), as is frequently done
in sequence analysis (for review, see ref. 43). Since we restrict ourselves to
the evolution of haploid organisms (which have only one copy of every
gene per cell), an individual can be characterized by, and thus identified
with, a sequence a : = ( a 1 , a2,..., aN) e { + 1, — 1 } N .

A population is a collection of individuals, and is characterized by the
relative frequencies pa of sequences a. We are interested in the evolution of
its composition with time. In the same fashion as one describes probability
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where e + 1 :=(1, 0)T, e-1 :=(0, 1)T, and T denotes transpose. Further,
pa(t) > 0, and £apa(t) = 1. The population size is assumed infinite in the
sense that the values of the pa's can vary continuously with time.

In our context, evolution is caused by mutation and selection. Here we
choose a model where mutation and selection are decoupled, i.e., mutation
is not a side effect of replication but may be caused by thermic fluctuations,
mutagenic substances, or radiation at any time of the life cycle. So, at every
instant, the individual a reproduces at rate Ra, dies at rate Da, and
mutates to an individual of type P at rate MBa. Because reproduction and
mutation are going on in parallel, we would like to call this model "para-
muse" (parallel mutation-selection) model.

The evolution of our population is then governed by the ordinary
differential equation (ODE)

reduces the ODE (2.2) to the linear system

distributions of spin configurations by elements of ®NC2, a population is,
at time t, given by the vector
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which is the haploid version of the decoupled mutation-selection equatior
of population genetics (see, e.g., refs. 13,26). Here, M is the mutatior
matrix with off-diagonal elements MBa and diagonal elements Maa: =
~ZB=a MBa. The reproduction (or 'fitness') matrix R is defined as

Obviously, selection comes into operation through the tendency of 'fit'
alleles to increase in number at the expense of less fit ones; mutation is
expected to counteract this process. The transformation(46)
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with the back-transformation

In order to specify M, it is assumed that every single site mutates inde-
pendently at rate u > 0, i.e.

where the Hamming distance d(B, a) is the number of sites where B and a
differ. Thus, by using the definition

with Ca in the kth place, and Pauli's matrices

M can be written in the form

The Raa are, as yet, unspecified; their choice determines the so-called
"fitness landscape". In contrast to M, there is no canonical choice for R.
Since R is diagonal and real, R must be an element of the group algebra
spanR<Cz

k, 1 <k<N>. Here, (az
k, 1 <k<N> is the multiplicative group

generated by { a z
k , 1 < k < N } , and spanR<Cz

k, 1 <k<N> is the set of all
linear combinations of elements in {az

k, 1 < k < N } ; i.e. spanR<Cz
k,

1<k<N> is the group algebra of <az
k, 1 < k < N > . Since the reproduction

rate depends, in principle, on all levels of the genotype-to-phenotype map-
ping (e.g. from protein-folding to behaviour), one has to assume that R
contains, in general, both short- and long-range interactions.

Obviously, M + R is the Hamiltonian of an Ising quantum chain in
a transverse magnetic field,(35) with general interactions within the chain. In
this picture, the fitness of a configuration corresponds to the interaction
energy of the spins within the chain, whereas mutation corresponds to
interactions of the spins with the transversal field. For instance, the mutation-
reproduction matrix of the so-called quadratic optimum model, where the



(and thus <i3, i2> = l).
Eq. (3.2) implies that the population grows (or decays) exponentially

(note that the original nonlinear ODE, Eq. (2.2), does not define the linear
one, Eq. (2.5), in a unique way—see below). In experiments, populations
may be prepared to grow exponentially for a certain time. But most

Here, <., .> is the Euclidean scalar product, x0 :=x(0) is the initial condi-
tion, and

Since Z0x a(0)= 1 by Eq. (2.4), P(t) can be interpreted as the ratio of the
population sizes at time t and at time 0. Eq. (2.5) gives

3. OBSERVABLE QUANTITIES

In order to characterize populations, we will now introduce observable
quantities which describe the genetic structure of the population, and the
structure of the population with respect to fitness. But let us start with the
(unconstrained) population size,

It is worth noting that Leuthausser(30,31,32) found an analogous equiv-
alence between a discrete-time version of Eigen's quasispecies model (which
assumes that mutations occur only on the occasion of replication events)
and the transfer matrix of a classical two-dimensional Ising model. In con-
trast to the para-muse model, where the time evolution is described by
exp(t (M + R)} according to Eq. (2.5), the time evolution of this "coupled
version" is given by (exp (M) exp (R) )M (M e N is the number of "genera-
tions"). Using the Trotter formula,(37) one can show that the quasispecies
model converges to the para-muse model if the number of generations per
time unit goes to infinity.
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fitness is proportional to N -1(N+
a — Na

- )2 (N+
a is the number of + 1's in a),

is the Hamiltonian of the mean-field Ising quantum chain (cf. Section 4.3):



where g(t) is some scalar (maybe nonlinear) function which describes the
elimination of individuals by population control. Then Eq. (2.2) holds for
p(f) :=z(t)/||z(t)||1; see also ref. 13. In this context, P(t) is the number of
produced indviduals including those eliminated by population control, and
their hypothetical descendants. Hence, P(t) is not directly accessible to
measurement.

In the sequel, the logarithm of the (unconstrained) population size will
be very helpful; we will call it the population size function and label it
by F:

populations, both in the laboratory and in the wild, underly some kind of
population control (for example, the dilution flux in a flow reactor, or the
carrying capacity of a biotope) which imposes some upper limit on the
(actual) population size. It is important to note that, under quite general
forms of population control, Eq. (2.2) still correctly reflects the relative fre-
quencies of sequences in the population, even if the (actual) population size
is changing. To be more precise, let the actual numbers of individuals with
sequence a, za, behave according to
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Now, let us consider the observable quantity "mean fitness" of the popula-
tion,

where we used Eq. (3.3) and the fact that R is diagonal. The other way
round, this operation can be performed for all matrices which are diagonal
with respect to (ea1,® ••• 8)eaN; ae {+1, — 1}N}. So, by using the non-
normalized vector x from Eq. (2.4) and exploiting the fact that £a ( M v ) a = 0
for all v e (g)N C2 (which is due to the vanishing column sums of M), W(t)
can be rewritten in the form

where
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Thus, W(t) can be interpreted as the "growth rate" of the population, too.
This implies the method of measuring the "mean fitness" of a population
by exposing a sample of the actual population to conditions under which
exponential growth prevails for a certain time. This is more readily accom-
plished than the measurement of the (unconstrained) population size
because one need not bother about the eliminated individuals. In the
sequel, we will use the densities of these observables, which are defined as
the observable quantities divided by N. They will be labelled by small
letters.

It is worth noting that the connection between P(t), F(t), and W(t] is
the same as between partition function, free energy, and internal energy of
an Ising quantum chain. In order to illustrate the differences between the
biological and the physical quantities, let us consider the case x0 = 2 - N / 2 Q
(equidistribution at t = 0) in more detail. Then

i.e. P(t) is proportional to the sum over all coefficients of exp( t (M+ R)),
whereas the partition function is the trace of exp ( — BH). Thus, in contrast
to the partition function, the population size is not invariant under
similarity transformations. This reflects the fact that, for the biological
system, there is one distinguished basis given by the sequences.

Let us now turn to the characterization of the genetic structure of the
population. An appropriate quantity is the 'surplus', which is, up to a
factor N-1, the length N minus twice the averaged number of — 1's in the
sequences:

Thus, if + + • • • + or ... — is the fittest sequence (which will be the
case for all fitness landscapes which we will treat in the next section), the
surplus is closely related to the Hamming distance from the fittest
sequence. On the other hand, the surplus may be written as



which is the biological analogue of the magnetization of the quantum
chain. Altogether, we have established a correspondence between the parti-
tion function, free energy, internal energy, and magnetization, on the one
hand, and the unconstrained population size, population function, mean
fitness, and surplus, on the other hand. The mathematical relationship
between the thermodynamic and the population quantities is as discussed
for the partition function and population size. Two other quantities will be
useful, namely the two-point function rk,k + 1
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and the variance of the surplus

We have thus seen that mappings of the form

describe the measurement of the observables of the evolution model. They
correspond to the Gibbs states

on the Pauli algebra AN :=spanc<ox
k, o

y
k, o

z
k ;1 <k<N>, which describe

analogous measurements in quantum chains3.(33) An essential difference is,
however, that the observables of the evolution model are elements of an
Abelian algebra. This corresponds to the fact that we are not dealing with
a quantum mechanical problem, but a problem of classical probability (cf.
ref. 6 and Eq. (4.53) in Section 4.3).

4. EXAMPLES OF PARA-MUSE MODELS

In this section, we will determine our observable quantities for three
fitness landscapes. The initial condition will always be that the population
at time t = 0 is an equidistribution of all sequences, i.e.

3 Note that, in order to be consistent with our calligraphic matrix notation, our symbols for
the algebra and its elements are interchanged with respect to the standard literature.(10)



which implies ||x0||1 = 1. This is a kind of "worst case scenario" in the sense
that the population has no genetic structure whatsoever, but it is an
instructive special case to study the relevant time scales. Note that the
choice of the initial condition x(0) has no influence on the equilibrium state
limt->i p(t), the Perron-Frobenius eigenvector(29) of M + R. (which exists
since M + R plus a suitable constant is irreducible).

The scaling of the quantities to be investigated is extensive. That is, the
norms of M and R are proportional to N, which implies that the reproduc-
tion and mutation rates increase with sequence length. This is perfectly ade-
quate as far as the molecular mutation mechanism is concerned, but may
be debated for the reproduction rates. In some approaches,(32,44) R is
chosen such that its norm is independent of N, whereas others(18) rely on
the extensive scaling. Whereas their argument is based on the demand that
the system should exhibit a phase transition, we should like to concentrate
on the observable quantities. For the description of systems with fixed,
finite N, the scaling has no immediate relevance. But we need the ther-
modynamic limit to extract the relevant behaviour of the systems. Under
which conditions is the infinitely large system appropriate to describe a
finite one? Let y be a fixed element of CN, and CN: R->C, t-> <y>t

N.
Since we are particularly interested in the dynamics of the system, we
choose as our criterion that the time evolution of the observable,
( c N ( t ) ) N e N , should converge uniformly to c i ( t ) . This will be the case if the
scaling of both M and R is extensive. A simple example is the surplus of
the Fujiyama-landscape (cf. Eqs. (4.7) and (4.8) in Section 4.1), which does
not depend on N. Another example is Tk, k+1 of Onsager's landscape (to be
treated in Section 4.2, and illustrated in Fig. 7) as a function of N. Note
that an intensively-scaled Si cannot fulfil the criterion at the same time,
of which the reader may convince himself by replacing y by y/N in the
Fujiyama surplus, Eq. (4.8). Finally, we would like to remark that the
intensive scaling of both M and R, as sometimes used in quantitative
genetics, cannot fulfill the convergence criterion either, since the connection
between the all-extensive and the all-intensive scalings is cex

N(t) = c i n
N(Nt) .

4.1. The "Mount Fujiyama" Landscape

As a warm-up exercise, let us consider the case
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This corresponds to the additive fitness scheme of population genetics (see
e.g. ref. 15), and is similar to Kauffman's landscape of an N-dimensional
"Fujiyama peak".(27) The corresponding quasispecies model has been
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treated in ref. (39). In our case, M + R is related to an Ising quantum
chain with interactions of the spins with external transversal (mutation)
and longitudinal (reproduction) fields, but without spin-spin interaction:

Thus, M + R can be written as the sum of N commuting angular
momenta,

Together with (nax
k + yaz

k)
2 = (u2 +y2 ) 1 =: A21, this results in

Let us now determine the observable quantities. The density of the
population size function, f( t) , is given by

(cf. Eqs. (3.5) and (4.1)). Thus, the density of the mean fitness is

The surplus is proportional to the density of the mean fitness:

Figures 1 and 2 show the surplus and the mean fitness per site for an
equilibrium population, l i m t - > p ( t ) . The time evolution of the surplus is
depicted in Fig. 3.



Fig. 3. Fujiyama landscape: Time evolution of the surplus in the case u = 0.5, }'= 1. Solid
line: Time evolution according to Eq. (4.8). Dashed line: surplus in the limit t -> i, cf. Fig. 1.

Fig. 2. Mean fitness per spin (w) at equilibrium, in the thermodynamic limit. Dotted:
Fujiyama landscape; dashed: Onsager landscape; solid line: mean-field landscape. Parameters
as in Fig. 1.

Fig. 1. Average surplus of sites with value + l ( s ) at equilibrium, in the thermodynamic limit,
as a function of the relative mutation rate, h: = u / y . Dotted: Fujiyama landscape (with
aj = a = l ) ; dashed: Onsager landscape (with y = l ) ; solid line: mean-field landscape (with
y = 2).

Ising Quantum Chain and Sequence Evolution 1027
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Since M + R is the sum of N operators which act on the N sites of the
sequence, the entries are not correlated. Together with the fact that the
interactions are not site-dependent, this leads to

for k = 1
We would like to remark that the same analysis is possible if we

replace y in Eq. (4.4) with site-dependent yk. Then the observables are
replaced by the corresponding averaged values (with the exception of
Tk1= <°1 t>Ar < ( ( T />Ar )> which always exist in the finite system. For example,

where

4.2. Onsager's Landscape

Onsager's landscape is the fitness landscape that stems from the Ising
quantum chain with nearest-neighbour interaction and periodic boundary
conditions ( f f z

N + 1 :=oz
1 ), cf. ref. 35. We need not worry about these bound-

ary conditions from the biological point of view, since their influence
vanishes in the thermodynamic limit. The reproduction matrix is

Thus, the reproduction rate of a sequence is proportional to N minus twice
the number of pairs of neighbouring sites with different entries ("domain
walls"). For example:

So, Onsager's landscape, which may be considered as a special case of
Kauffman's N2-landscape,(28) is a relatively simple one. But it has very
interesting properties from the biological point of view. For instance,
there are flat ridges, which means there are sequences (for example

sequence fitness
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+ + + +) from which one cannot go "uphill" (to a fitter sequence) by
a single mutational step. Put differently, for most sequences, there are
neighbours in the space which are selectively equivalent, which corresponds
to the idea of a "fluctuating neutral space" (see, e.g., ref. 23).

The corresponding Hamiltonian reads

The aim is to find as simple as possible an expression for e x p ( t ( M + R ) ) .
This task being very similiar to the investigation of the transfer matrix of
the 2D-Ising model with nearest-neighbour interactions, we use the
methods of Schultz et al.(40,45) We summarize the essential steps here since
we will need them to calculate the biological observables. As a first step, we
rewrite M + R as a quadratic form in the fermionic operators

For our calculations it is essential that the vector Q is the vacuum vector
of the ck's, i.e.

Using definition (4.13), one obtains

where

For a discussion of the relationship between the various Hamiltonians
involved, see ref. 3. U distinguishes states with even and odd numbers of
particles, and commutes with M + R. So, due to cN+1 = +c1 the P+ can
be interpreted as the projection operators on the subspaces which
correspond to periodic and antiperiodic boundary conditions, respectively.
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In order to determine our observable quantities under the initial condition
(4.1), we must evaluate terms of the form <£, y exp( t (M + R)) Q>, where
YeC N . Due to [P±,M + R ] = 0 and P+Q = Q, these calculations can
be restricted to the image of P+, and we need not consider , H-. The
only exception will be the determination of l i m t - > i s ( t ) , where we will
investigate our Hamiltonian plus a small symmetry-breaking external field,
where a vector in the image of P- will be required. The transformation of
H- being very similar to that of P+,(40) however, we will restrict our-
selves to the latter. Since H+ obeys antiperiodic boundary conditions with
respect to the ck's (they are fermions!), it is natural to introduce the
"running wave operators"

i.e., we perform a discrete Fourier transformation of the fermionic
operators. Note that Q is the vacuum state of the running wave operators,
too (cf. Eq. (4.14)). With the help of these operators, H+ can be decom-
posed into the sum

where here and in what follows we restrict ourselves to the case N even,
and

Since [H2q-t, H2p-1] =0, one obtains from Eq. (4.18) the desired sim-
plification of exp( t (H +):

Another useful identity is [45, p. 238]
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where y2q-1 : = y/1 + h2 - 2h cos(n/N(2q - 1)) (with h : = u / y ) . Note that
P2q-1 projects on the states where both corresponding fermions do or do
not exist. As a direct consequence,

Now we can determine the observable quantities, where it is essential that
Q is the vacuum vector, i.e., we are interested in vacuum expectations. The
density of the population size function is:

Let us now turn to the investigation of the genetic structure of the
population by calculating the two-point function Tk, k+1:= <aka

z
k + 1>

t
N.

1031

Consequently, the density of the mean fitness has the form

where
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From ax
kQ = Q and ck£2 = 0, one obtains <cz

kc
z
k + 1>

t
N = — (ckck +1 >

t
N.

A transformation to the running wave operators leads to

Noting that Vs(t) + s 2( t ) = N - 2 S N
k , l ( t ) , one gets

A direct calculation of the surplus (3.11) leads to s(t) = 0 (as a conse-
quence of [u, M + R]=0, uQ=Q, and uaz

ku = -cz
k). But this does not

necessarily describe the stable states of the system (if we regard Onsager's
landscape as an idealization, where the real system contains an additional
small symmetry-breaking perturbation). For the equilibrium state, adding a
small external field ( c c N - 1 ) and determing the Perron-Frobenius eigenvec-
tor of the resulting Hamiltonian in first order perturbation theory according
to the method by Yang(50) yields, in the limit N-> i,

see Fig. 1. For finite time, however, this perturbation theoretical method
does not work any more. On the other hand, we can investigate s(t) for
finite t in the limiting case u = 0 (selection only), because in this case the
functional < . >t

N is exactly the Gibbs state (3.15) of a one-dimensional
Ising model without transversal field. Then, one has to deal with M = 0,
and

This gives [45, p. 127]
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with

It is a remarkable fact that, in contrast to the equilibrium state (4.28), the
time evolution of s(t) depends on the exact value of the parameter b, as
illustrated in Fig. 4. On the other hand, for all finite b, the absolute value
of the surplus approaches 1 in finite time (this may, however, not be a
realistic biological time scale), so s = 0 is unstable. The fact that no spon-
taneous symmetry breaking takes place for finite temperatures gives us
good reason to believe that the behaviour of the system is qualitatively the
same for all h < 1.

Let us now consider the two-point function T k , k + N/2 as an order
parameter which describes the long-range order of the system (because of
the periodic boundary conditions, Tk, k + N/2 is the two-point function of the
spins with maximum distance). Evaluating the leading term in N (see
Appendix A.1), one obtains

where s is the surplus of the perturbed system, cf. Eq. (4.28). This
corresponds to the result of Potts and Ward(34,36) who found that the

Fig. 4. Onsager's landscape: Time evolution of the surplus according to Eq. (4.30) in the case
(u = 0 and y= 1. Dotted line: b = 0.01; dashed line: b = 0.0033; solid line: b = 0.001.

see Figs. 5 and 7. It is worth noting that
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Fig. 5. Onsager' landscape: Time evolution of rk,k+ N/2 for A/=100, y=1, as given by the
approximate formula (4.31). Dotted line: u = 0.1; dashed line: u = 0.5; solid line: u=0.9.

magnetization of the two-dimensional Ising model can be determined as
the square root of a two-spin correlation.

As a consequence of Eq. (4.31), ik,k + N/2 has critical exponent 1 at
h = 1 for all t>0. So, using Tk,k + N/2 as an order parameter, we call the
point h — 1 an error threshold, in correspondence with the notion of
a phase transition in physics. Here, the action of selection is overcome by
the randomizing effect of mutation, and the population loses its genetic
structure.

Determing the leading term of the right-hand side of Eq. (4.27) (cf.
Appendix A.1) and using the identity s ( t ) = 0 (here, the unperturbed quan-
tity is required) results in

Here, o ( x ) , x ( x ) and A(x) are the functions $(n(2q—1)/N):=(S 2 q - 1 ,
X ( n ( 2 q - 1 ) / N ) : = X2q-1, and X(n(2q- 1 ) / N ) : = A 2 q - 1 . It is worth noting
that

for h < 1. Here, s is the surplus of the perturbed system again, see
Eq. (4.28); but we should like to emphasize that Vs belongs to the unper-
turbed situation where the population "splits" into the two stable branches
(within each branch, the variance vanishes). The essential point of the time
evolution of the "long-range correlation" Tk,k + N/2 and of the variance of
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the surplus is that they are determined by Nexp(— 2y(1 — h ) t ) . Hence, the
time scale is of the order of log N, which implies that the corresponding
equilibrium values are reached (approximately) in a realistic time, at least
if h#1. In the limit h / 1 , the time required to reach the equilibrium
diverges ("critical slowing down" with critical exponent 1). Another direct
consequence of the fact that Eqs. (4.31) and (4.33) depend on N is that a
performance of the thermodynamic limit N-> i for tk,k + N/2 and Vs (for
h < 1) would lead us to results which do not correctly reflect the system's
behaviour. In contrast, the values of the "short-range correlation" Tk, k+1 +1,

and the growth rate converge for all t to the value of the thermodynamic
limit, which are given by the corresponding integral,

as illustrated in Fig. 6. As a direct consequence, the time scale of the time
evolution of these quantities does not depend on system size. In the limit
t -> i one gets

which is illustrated in Fig. 2. Here, 02 = 4h/(1 +h)2, and E ( n / 2 , 0 ) is the
complete elliptic integral of the second kind [1, 17.2.8]. In particular, for
all t >0, limN->i (limh->1 (d2/dh2) w(t)) diverges logarithmically (cf. Fig. 8).
We thus observe three different phenoma which are typical of second-order
phase transitions, namely long-range order, critical slowing down, and
non-analyticity of w, at the "error threshold".

Fig. 6. Onsager's landscape: Time evolution of rk, k+1 for y=1, as given by formula (4.35).
Dotted line: N= 10; dashed line: N= 100; solid line: N= 1000.
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Fig. 7. Onsager's landscape. Time-evolution of rk, k+N/2. Solid lines: exact solutions (A.1) for
N = 50. Dashed lines: approximations in the large system limit according to Eq. (4.31)

4.3. The Mean-Field Landscape

Onsager's landscape is a landscape with ridges and neutrality, but it
should not be taken too literally as a model of biological interaction. In
contrast to the simple nearest-neighbour interaction in this model, true fit-
ness values depend on all levels of the genotype-phenotype mapping, thus
giving rise to interactions that are long-range and very complicated in the
sequence picture. Examples are the genetic determination of quantitative
traits, or the fact that DNA strings serve as templates for proteins, which
then fold in three dimensions.

Let us therefore consider the following mutation-reproduction matrix
as a representative model with long-range interactions:

Fig. 8. Onsager's landscape: Second derivative of w with respect to h, cf. Eq. (4.35). Solid
line: N= 100. Dotted line: N= 1000.



This corresponds to the Hamiltonian of an Ising quantum chain with
homogeneous mean-field interactions within the row. In the context of
evolution, this is a realistic example of fitness landscapes that are invariant
under permutation of sites, which are also relevant for the multi-locus
theory of population genetics (see, e.g., ref. 7). For y<0 (y>0), the fitness
landscape is a concave (convex) function of the number of sites with identi-
cal entries. The case of y < 0 is related to the quadratic optimum model as
used in quantitative genetics (but note the different scaling of the mutation
rates and fitness values as discussed in Section 3). It is worth emphasizing
that, in contrast to the situation in physics, where interactions are inherently
local and a mean-field Hamiltonian is an approximation, Eq. (4.37) is a
model as such in the evolutionary context.

Let us begin the investigation of the mean-field landscape by briefly
discussing how one can treat the mean-field Ising quantum chain by
operator algebraic methods,(10,11) and which results of statistical mechanics
carry over to the evolution model. This method seems to be attractive since
it works for all permutation invariant models(16,21,38) and thus in principle
allows generalization to a four-state model (after all, the genetic code is a
four-letter alphabet). So we will use this relatively simple model to intro-
duce the method which we hope will be helpful in more complicated (and
realistic) cases.

Consider the Pauli algebra AN : = spanc<cr£; ae {x, y,z}, l < k ^ N )
(cf. Eq. (3.15)) as a C*-algebra on the Hilbert space HN :=(<S>NC2,
< ., . >), where A* is the canonical adjoint matrix of A for all A e A N . The
scalar product of HN (the canonical scalar product on ®N C2) induces the
norm on AN.

Let A*N be the set of all continuous linear functionals on AN. In the
finite case N < i , there exists some Qw

Ne AN such that w N ( A ) = t r N ( Q w
N A ) .

w N e A * N corresponds to a state on AN (i.e., w N ( A * A ) > 0 , w N ( 1 ) = 1) if
and only if Qw

N is a density matrix (i.e., if gw
N is self-adjoint with positive

spectrum, and tr(Qw
N) = 1). An example is the Gibbs state wB

N (of the Ising
quantum chain) at the inverse temperature B, given by the density matrix

Ising Quantum Chain and Sequence Evolution 1037

with the Hamiltonian

corresponding to the mutation-reproduction matrix (4.37).
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It is a well-known result from statistical mechanics(11,24) that the
Gibbs state wB

N is the unique minimizer of the free energy (density) func-
tional

on the states on AN.
Another essential point is that wB

N is invariant with respect to the per-
mutation of sites. In more detail: Let the representation of the symmetric
group SN be given by the following definition of the transposition tkl of
sites k and l:

Then for all A e A N , YeSN : = < t k l , 1 < k , l < N > :

The inversion of all spins is another symmetry of wB
N:

where U : = a 1 - - - a x
N .

In the thermodynamic limit, there are many results available on the
set of equilibrium states of the infinite chain. Therefore we consider AN

naturally embedded in the "quasilocal algebra" A (for details, see ref. 10)
such that A := U J V C N AN^.

This can be interpreted as considering every finite system as a sub-
system of an infinitely large one. In particular, every state aN on AN can
be considered as a state caN on A (the extension is not unique, but the
ambiguity has no relevance for Gibbs states coN in the limit N -» i). For
example, we can choose cbN such that

(this is the continuation of QN with the trace state on A for stfN,eAN, if
N'^N).

The thermodynamic limit of co^ (Ne N ) is performed in the weak*-
topology, i.e., we are looking for the limiting Gibbs state aB which is
defined by limN-i C O B

N ( A ) = wB(A) for every j t f e A , if it exists at all.
Every accumulation point of the sequence (&f

N)Ne N must be permuta-
tion invariant, i.e., wB-(A) = w B ( g a g - 1 ) for all AeA, g e u N e N S N . It
follows from the permutation invariance of wB, cf. ref. 41, 42, that this state



can be decomposed into homogeneous product states denoted by (x) °° §
with <t> a state on the one-point algebra of all 2 x 2-matrices M2 : =
spanc<<7*, ay, <rz> (this is even the central decomposition of wB (10)). With
the invariance of wB under the inversion of all spins, we find (see refs. 22
and 20):

B1 denotes the set {x2 + y2 + z2< 1; z>0} which parametrizes the spin-
inversion invariant states on M2 (the one-point algebra). For x2 + y2 +
z2 ^ 1, in particular, the set of all density matrices in M2 is given by
{Qp(x,y,z)

 := 1(12 + xa
x + yay + Zaz) }. 6 is a uniquely determined probabil-

ity measure on B1.
Furthermore, one can show(21,38) that wb minimizes the limiting free

energy density functional. Since this functional is an affine function on the
simplex of permutation invariant states, it is sufficient to investigate the
boundary of that simplex which is given by the set of product states
{(x)°° (/>}. This leads to the following formula for fB:

The (g)°° QB
± (QB± considered as states on M2) minimize the limiting free

energy density if m is a solution of v//z
2 + (yw)2 = y tanh(B ^/u2 + (ym)2),
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Every minimizer <^ of Eq. (4.46) is a solution of a self-consistency
equation (but not vice versa! see below), which allows the determination of
all limiting Gibbs states as

where

and m(B) : = tr(QBQz) fulfils the self-consistency equation
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or m = 0 if this equation has no solution. In particular, one obtains the
following formula for the ground state energy density4 (h := u / y ) :

What do these results for the quantum chain mean for the observables
of the corresponding para-muse model? As mentioned in Section 3 (cf.
Eq. (3.14)),

plays the same role for the para-muse model as the Gibbs-state in statistical
mechanics. An essential difference is that < .>t

N is not a state on AN. To
see this, let us rewrite Eq. (4.53) as

where

Note that Q'N is not self-adjoint and hence no density matrix. So < . >^ is
not a state on AN. But on the other hand, since pa(t)^0, ZaPa(t) = l
< .> 'N is a state on the Abelian C*-algebra CN :=spanc<a£, 1 ^k^N~>.
Embedding CN into the corresponding "quasi-local algebra" C (with the
same embedding scheme as in the case of the AN), one looks for the limit-
ing state < • >'i : = l i m N - > i < .>'N in the weak*-topology. Because < • >5v
has the same symmetries as ca^, each accumulation point of (( • y'N)tfeN

must be of the form

where {e<*(z) := ^(1l2 + z<7z); z2s£ 1} is the set of all states on the one-point
algebra spanc<crz>, and 0 is a probability measure on the interval [0, 1].
Note that the restriction to the Abelian algebra results in an identification
of all linear functional of A which differ only in the ax- or ^-component.
Hence one can characterize each state of the one-point algebra by

4Since w^Aff 1 ^) + (y/2)N^ = (O^N^3fN) + (y/2)A7' for all N 1 , N 2 ^ M , the limit
l i m N ^ a ) f t > A ' ( N - 1 H N ) coincides with lim^..^ limM-i w^N -1HN).



z: = <t>(az). As in the physical situation, a direct determination of the state
in the thermodynamic limit seems to be impossible. Unlike the situation in
physics, however, there is no remedy in the form of an extremal principle
for the muse model.

Let us continue to exploit our knowledge in terms of the biological
observables. Because of the inverted sign of the Hamiltonian (cf. Eqs. (4.37)
and (4.38)), the Perron-Frobenius eigenvector of M + R is exactly the
energy ground state of 3eN (up to normalization). Thus
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i.e., the density of the mean fitness of the equilibrium state is the density
of the ground state energy of the Ising quantum chain, up to a minus
sign. Thus, one obtains, from Eq. (4.50), the maximum eigenvalue of
N-1(M + R) in the limit N-» i (see Fig. 2). It is worth emphasizing that,
in principle, there can be a problem in the determination of the ground
state energy of the quantum chain if the two limiting processes B —> i and
N -> i do not commute. But in the case of the mean-field para-muse
model both successions lead to the same result. Note that Eq. (4.52) is a
first hint that there is an error threshold at h = 1.

It can be shown (cf. Appendix A.2) that the equilibrium state is given
by

So the limiting state undergoes a transition from two branches with
opposite nontrivial order parameter s to a phase with vanishing surplus;
see Fig. 1. It is this bifurcation that makes us identify h = 1 with an error
threshold.

Now, let us consider the time-evolution of this model. As mentioned
above, we cannot determine the limiting state l i m N - > i < . >'N for arbitrary
t because we do not have an extremal principle for this purpose. But since
the time evolution of a population is a highly relevant issue, we don't want
to finish without a conjecture about the time-evolution in the thermo-
dynamic limit. But let us first consider the limiting case u = 0. In this case,
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In particular, the surplus coincides with the physical magnetization for all
N e N . As a consequence of Eqs. (4.50) and (4.51), the para-muse model
without mutation can be described in the thermodynamic limit by

where

and s:= | tr (cr z g' ± ) \ is the positive solution of s = tanh(tys) if this solution
exists, and s = 0 otherwise. Note that in this case we cannot distinguish
between Q'± and the density matrix of the corresponding quantum
chain. Our conjecture is that, for all u, the mean-field para-muse model
may be described as a particle in an "effective field". The possibility which
seems to be the most natural one, namely Q'± : = e x p ( t ( u c x ± y s c z ) )
(1 + a x ) / t r ( e x p ( t ( u c x ± y s c z ) ) ( 1 +ax)), is not a suitable candidate, how-
ever, because it would imply l i m t - i s ( t ) = 1—2h in contradiction with
Eq. (4.56). We thus have to look for a "deformed effective field".

As an ansatz we choose

where f(s) is some function of s. This leads to the "self-consistency equa-
tion" for s ( t ) :

with X : = v/f
2 + u2. In order to determine the possible choices for f(s), we

investigate the limit t-» i:

which has the solutions

Let us consider the non-trivial solution in more detail. It is required that,
in the limiting case u = 0, Eq. (4.58) is reproduced for all /. Furthermore,
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we know that lim,^, ^ s(t) = ±(1 — h) for h< 1. We thus replace 1 -s2 by
2h — h2, which leads to f ( s ) = 2s/(2 — h). Our conjecture then takes the form

if this solution exists, and s = 0 otherwise. At equilibrium, Eq. (4.65)
reduces to

in agreement with Eq. (4.56).
Our solution is certainly not a rigorous one. So one has to check

numerically whether < . > f corresponds with the state we have conjectured.
One ambiguity should be taken into account: The equidistribution of all
sequences and the population which consists only of sequences with N/2
"up-spins" and N/2 "down-spins" converge to the same product state in the
thermodynamic limit, namely 0*^(0). We thus use (mixtures of) both
initial conditions of the finite system to test our conjecture. The result is
shown in Fig. 9 and demonstrates that we may be quite confident about
our conjecture.

Fig. 9. Mean-field landscape: time evolution of the surplus. Dotted line: Numerical solution
for N=150, with the initial condition x 0 = 2 - N / 2 2 . Dashed line: Numerical solution
for N=150, with the initial condition x0= l/10(2 -N/2f2 + 9v), v := 1/N! £geSN

g e +1 ® ••• ® e +1 ® e _ i ® ••• ® e _1. Solid line: Conjectured solution in the thermodynamic

limit, according to Eq. (4.61).

where s(t), according to Eq. (4.61), is given by the positive solution of



It is worth noting that our solution implies a threshold behaviour in
the time evolution for h<1. The reason seems to be that the neigh-
bourhood of the minimum of the fitness landscape is so flat that evolution
can only find its way uphill after an initial "spreading" phase.

5. DISCUSSION

The correspondence between muse models in sequence space and two-
dimensional Ising models, as first described by Leuthausser a decade ago,
did not find its way into many applications; the work of Tarazona(44) and
Franz et al.(18) are notable exceptions. It may have been felt that, despite
the attractive formalism, transfer matrices are hard to treat explicitly except
in favourable cases, especially since one has to bother about surface
phenomena here.(44,18) Also, the anisotropy of the interactions (nearest-
neighbour between rows but long-range within rows) leads to hard
problems in the construction of solvable examples; competing interactions
like those treated in ref. 17 cannot be accomodated in this picture. Very
recently, however, a new "radiation" of (mainly approximate) statistical
mechanics methods as applied to sequence space models has taken place.
Among these, there are moment equations(49) stochastic differential equa-
tions(51), spin glass theorym,(18) and methods from random polymers.(19)

Naturally, interest has centered on the error threshold phenomenon,
although there has been considerable disagreement on how to interpret it
as a phase transition (cf. ref. 18).

The relationship between the para-muse model and the Ising quantum
chain, which we have made precise in this paper, serves a two-fold purpose
in this context. Firstly, quantum chain Hamiltonians are more tractable
than the corresponding transfer matrices and may be dealt with rigorously,
at least for representative examples. This becomes particularly clear for the
permutation-invariant fitness landscapes. In the transfer matrix picture, this
is a difficult situation, since the mean-field interaction is restricted to within
the rows, whereas nearest-neighbour interaction prevails between the rows.
One must therefore rely on heuristic arguments and approximations
with their typical ambiguities.(32,44) In sharp contrast, the mean-field
Hamiltonian of the corresponding quantum chain is tailored to the biologi-
cal situation and lends itself to rigorous treatment.

Care must be exercised, however, in defining (and evaluating) suitable
observables. Since one has to deal with classical probabilities instead of
quantum-mechanical ones, the quantum-mechanical formalism may not be
taken too far. Whereas it does carry over to the calculation of the mean fit-
ness ("ground state energy"), the biological "surplus" differs decisively from
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the physical magnetization and requires special methods for its evaluation;
see also ref. 6. In general, great care must be exercised when converting
quantum mechanical states to classical probabilities, as was already noted
in a different genetic context.(12)

These observables have also led us to make precise the notion of an
error threshold. The equivalence between the size, size function, mean fit-
ness, and surplus of a population, and the partition function, free energy,
internal energy, and magnetization of the quantum chain allows us to lean
heavily on the physical concepts here. On the one hand, the phase trans-
ition was described via the vanishing of the two-point correlation function
for long-range order. On the other hand, the bifurcation of symmetric
states could also be used to characterize an error threshold.

It is worth emphasizing, however, that the biological interest is by no
means in critical points (and critical exponents) alone. The availability of
quantum chain methods for muse models should help us to learn more
about the full distribution of mutants, and individual fitness, for sub-critical
mutation rates-and for more realistic fitness landscapes.

Choosing an arbitrary, but small and fixed x 0 >0 and defining q0
 : =

sup{q e {1,..., N / 2 } , n ( 2 q - 1 ) / N ^ x 0 } leads to
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where I1 ( I 2 ) is the rhs of Eq. (A.1) with the sum running from q= 1 to
q = q0(q = q0+I to q = N/2}.

A. APPENDIX

A.1. Onsager's Landscape: The Determination of tk, k+N/2 and
Vs in the large system limit

Let us first assume that 0 <h < 1. The essential problem is that, since
sin(r(2q- 1 ) / N ) = (-1)q + 1 and limN->i p1 = 0 for h<1, the right-hand
side of Eq. (4.26) does not converge to an integral.

Using </>2q-1 X2q -1 = s i n 2 ( r ( 2 q — 1 ) / N ) , one obtains
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Let us first consider I2. The alternating sign in the sum together with
the mean value theorem gives that I2 (up to a term of order N-2) is
proportional to N-1 times an approximation of the integral

where

note that f ( t ) = 0, by de l'Hospital's rule. Thus, since (d/dx)f(x) is an
integrable function on [x0, TT], I2 is a term of order N-1 and may hence
be neglected, i.e. T k, K+ N/2 « I1.

Let us now turn to I1 where we replace every term by approximations
separately (recall that n(2q~ 1 ) / N < x 0 ) :

These approximations result in:

where x:=n/N, y : = 2(1 -h) exp( -2(y-u) t), and z: = 4n(1-h) (1-
e x p ( — 4 ( y — u ) t))/N2. Replacing the finite sums in Eq. (A.6) by the corre-
sponding series results in [ref. 25, (6.1.62)]:

Fig. 7 shows that this is an appropriate approximation of rk, k+N/2.
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Now let h>1. Since limN-i p1 =2(h— 1), one finds (in the same
manner as for I2) that tk,k+N/2 is proportional to N-1 times an approx-
imation of the integral

i.e., pk ,k+N/2 is a term of order smaller than N-1 for h > 1.
The variance of the surplus can be determined in much the same

fashion (the mean-value theorem is not required, and formula [ref. 25,
(6.1.41)] may be used directly).

A.2. Mean-Field Landscape: The Determination of the
Equilibrium State lim t - ip(t)

Let us consider the state

Since (SQ = Q and [0, M + R] = 0 for each g e SN, one can rewrite < • >'N
in the form

where P = ( N ! ) - 1 SgesNG. In particular, the equilibrium state of the para-
muse model is given by

where y is the Perron-Frobenius eigenvector and £a ya = 1. As a conse-
quence, y is an element of the (N+ 1 )-dimensional vector space (in order
to simplify the notation we restrict ourselves to the case N even)
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Note that

where { \ N / 2 , m > , — N / 2 ^ m ^ N / 2 } is the common eigenbasis of the
angular momenta operators (Jx)

2 + (Jy)
2 + (Jz)

2 and JZ (Ja :=2Z*Li< 7*)>
all well-known from quantum mechanics (< N/2, m \ N/2, m > = 1). The
coefficients in Eq. (A. 13) are caused by the condition that the sum of the
vector coefficients in the 2N-dimensional vectorspace is the same as the sum
restricted to V:

where

On the other hand, M + R can be written in terms of angular momentum
operators

Thus, up to the similarity transformation defined in Eq. (A.13), M + R
restricted to V is given by the coefficients of the angular momentum
operators in quantum mechanics which belong to the irreducible represen-
tation of su(2, C) of dimension N+ 1. As a result, N-1(M + R) restricted
to V obeys the eigenvalue equation:

Now, limt-i < . > 'N=<(Q, P. Py> can be identified with the probability
measure fN : = N / 2 _ N / 2 y m ^ 2 m / N on the spectrum of N - 1 Y . k - 1 a l - We

would like to remark that this is the "permutation invariant version" of the
usual formulation of < • >t

N as used in, e.g., ref. 12. Thus, one obtains the
following equation for the measure of the equilibrium state:
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The Fourier transform of fN is defined as

cf. ref. 9. Thus, an application of the Fourier transformation to Eq. (A.18)
results in:

The initial conditions of this ODE are:

The second equation is a consequence of the symmetry of /: Since / is
invariant with respect to the inversion of the spins, there must be ym = y_m

for all -N/2^m^N/2. Thus, f ( k ) = f ( - k ) for all k e R , which leads to
the second initial condition.

Since the coefficients of Eq. (A.20) are continuous functions of N-1,
f N ( k ) is a continuous function of both N and k [47, p. 124] and will thus
converge to f i ( k ) for all k e R, where fi(k) is the solution of the ODE

where we used formula (4.50) for the energy ground state of the Ising
quantum chain. Taking into account the initial conditions (A.21) one gets
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The fact that l imN - i /fN(k) = fi(K) for all keR. together with Levy's
Continuity Theorem [9] results in

in the weak topology. As a result, h = 1 is an error threshold of this model.
Remember that the only difference between the determination of the

Perron-Frobenius eigenvector of the para-muse model and the calculation
of the energy ground state of the quantum chain is the similarity transfor-
mation defined in Eq. (A. 13). But in the thermodynamic limit the energy
ground state (represented as a vector) is given by

in contrast to Eq. (A.24); cf. ref. 6. Obviously, the thermodynamic limit
does not commute with the similarity transformation.

ACKNOWLEDGMENT

It is our pleasure to thank M. Baake for numerous discussions, and for
critically reading the manuscript.

NOTE ADDED IN PROOF

This paper is based on the first author's Ph.D. thesis, which contains
further details and is now available as H. Wagner, Biologische Sequenz-
raummodelle und Statistische Mechanik (Dissertationsdruck Darmstadt,
Darmstadt, 1998).

REFERENCES

1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, 9th printing (Dover,
New York, 1970).

2. E. Baake, Diploid models on sequence space, J. Biol. Syst. 3:343 (1995).
3. M. Baake, P. Chaselon, and M. Schlottmann, The Ising quantum chain with defects ( I I ) ,

Nucl. Phys. B 314:625 (1995).
4. N. H. Barton and M. Turelli, Natural and sexual selection on many loci, Genetics 127:229

(1991).
5. E. Baake, M. Baake, and H. Wagner, The Ising quantum chain is equivalent to a model

of biological evolution, Phys. Rev. Lett. 78:559 (1997).



6. E. Baake, M. Baake, and H. Wagner, Quantum mechanics versus classical probability in
biological evolution, Phys. Rev. E 57:1191 (1998).

7. N. H. Barton, The maintenance of polygenic variation through a balance between muta-
tion and stabilizing selection. Genet. Res. Camb. 47:209 (1986).

8. E. Baake and T. Wiehe, Bifurcations in haploid and diploid sequence space models,
J. Math. Biol. 35:321 (1997).

9. H. Bauer, Probability Theory (de Gruyter, Berlin, 1996).
10. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics,

Vol. 1, 2nd edition (Springer, New York, 1987).
11. O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics,

Vol. 2, 2nd edition (Springer, New York, 1996).
12. R. Burger, On the maintenance of genetic variation: Global analysis of Kimura's con-

tinuum-of-alleles model, J. Math. Biol. 24:34 (1986).
13. J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory (Harper &

Row, New York, 1970).
14. M. Eigen, J. S. McCaskill, and P. Schuster, The molecular quasi-species, Adv. Chem. Phys.

75:149(1989).
15. W. J. Ewens, Mathematical Population Genetics (Springer, New York, 1979).
16. M. Fannes, H. Spohn, and A. Verbeure, Equilibrium states for mean field models,

J. Math. Phys. 21:355 (1980).
17. H. Frahm, Integrable spin-1/2 XXZ Heisenberg chain with competing interactions, J. Phys.

A 25:1417 (1992).
18. S. Franz, L. Peliti, and M. Sellitto, An evolutionary version of the random energy model,

J. Phys. A 26:L1195 (1993).
19. S. Galluccio, R. Graber, and Y.-C. Zhang, Diffusion on a hypercubic lattice with pinning

potential: exact results for the error-catastrophe problem in biological evolution, J. Phys.
A 29:L249(1996).

20. T. Gerisch, Internal symmetries and limiting Gibbs states in quantum lattice mean field
theories, Physica A 197:284 (1993).

21. T. Gerisch and A. Rieckers, The quantum statistical free energy minimum principle for
multi-lattice mean field theories, Z. Naturforsch. 45a:931 (1990).

22. T. Gerisch, A. Rieckers, and H. J. Volkert, Thermodynamic formalism and phase tran-
sitions of generalized mean-field quantum lattice models, Z. Naturforsch. 53a:l79 (1998).

23. J. Gillespie, The Causes of Molecular Evolution (Oxford University Press, New York,
1991).

24. S. Guiasu and A. Shenizer, The principle of maximum entropy. Math. Intelligencer 7:42
(1985).

25. E. R. Hansen, A Table of Series and Integrals (Prentice-Hall, Englewood-Cliffs, 1975).
26. J. Hofbauer, The selection mutation equation, J. Math. Biol. 23:41 (1985).
27. S. A. Kauffman, The Origin of Order (Oxford University Press, New York, 1993).
28. S. A. Kauffman and S. Johnsen, Coevolution to the edge of chaos: coupled fitness

landscapes, poised states, and coevolutionary avalanches, J. Them. Biol. 149:467 (1991) .
29. S. Lang, Algebra, 3rd edition (Addison-Wesley, Reading, Massachusetts, 1993).
30. I. Leuthausser, An exact correspondence between Eigen's evolution model and a two-

dimensional Ising system, J. Chem. Phys. 84:1884 (1984).
31. I. Leuthausser, Physikalische und hiologische Modelle der Selbstorganisation (Dissertation,

Universitat Braunschweig, 1987).
32. 1. Leuthausser, Statistical mechanics of Eigen's evolution model, J. Stat. Phys. 48:343 (1987).
33. E. H. Lieb, T. D. Schultz, and D. C. Mattis, Two soluble models of an antiferromagnetic

chain, Ann. Phys. 16:407 (1961) .

Ising Quantum Chain and Sequence Evolution 1051



34. E. W. Montroll, R. B. Potts, and J. C. Ward, Correlations and spontaneous magnetization
of the two-dimensional Ising-model, J. Math. Phys. 4:308 (1963).

35. P. Pfeuty, The one-dimensional Ising-model with a transverse field, Ann. Phys. 57:79
(1970).

36. R. B. Potts and J. C. Ward, The combinatorial method and the two-dimensional Ising-
model, Progr. Theoret. Phys. 13:38 (1955).

37. M. Reed and B. Simon, Functional Analysis, Vol. 1, 2nd edition (Academic Press, San
Diego, 1980).

38. G. R. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field
systems, Helvet. Phys. Acta 62:980 (1989).

39. D. S. Rumschitzky, Spectral properties of eigen evolution matrices, J. Math. Biol. 24:667
(1987).

40. T. D. Schultz. D. C. Mattis, and E. H. Lieb, Two-dimensional Ising model as a soluble
problem of many fermions, Rev. Mod. Phys. 36:856 (1964).

41. E. St0rmer, Large groups of automorphisms of C*-algebras, Commun. Math. Phys. 5:1
(1967).

42. E. St0rmer, Symmetric states on infinite tensor products on C*-algebras, J. Fund. Anal.
3:48 (1969).

43. D. L. Swofford, G. J. Olsen, P. J, Waddell, and D. M. Hillis, Phylogenetic inference, in
Molecular Systematics, D. M. Hillis, C. Moritz, and B. K. Mable, eds. (Sinauer,
Sunderland, 1995).

44. P. Tarazona, Error threshold for molecular quasispecies as phase transition: From simple
landscapes to spin glass models, Phys. Rev. A 45:6038 (1992).

45. C. J. Thompson, Mathematical Statistical Mechanics (Macmillan, New York, 1972).
46. C. J. Thompson and J. L. McBride, On Eigen's theory of the self-organization of matter

and the evolution of biological macromolecules, Math. Biosci. 21:127 (1974).
47. W. Walter, Gewohnliche Differentialgleichungen, 5th ed. (Springer, Berlin, 1993).
48. T. Wiehe, E. Baake, and P. Schuster, Error propagation in reproduction of diploid

organisms, J. Theor. Biol. 177:1 (1995).
49. G. Woodcock and P. Higgs, Population evolution on a single-peaked landscape, J. Theor.

Biol. 179:61 (1996).
50. C. N. Yang, The spontaneous magnetization of a two-dimensional Ising-model, Phys. Rev.

83:808(1952).
51. Y.-C. Zhang, Quasispecies evolution of finite populations, Phys. Rev. A 55:R3187 (1997).

1052 Wagner et al.


